Model-Based Object Recognition Using Geometric Invariants of Points and Lines
نویسندگان
چکیده
In this paper, we derive new geometric invariants for structured 3D points and lines from single image under projective transform, and we propose a novel model-based 3D object recognition algorithm using them. Based on the matrix representation of the transformation between space features (points and lines) and the corresponding projected image features, new geometric invariants are derived via the determinant ratio technique. First, an invariant for six points on two adjacent planes is derived, which is shown to be equivalent to Zhu’s result [1], but in simpler formulation. Then, two new geometric invariants for structured lines are investigated: one for five lines on two adjacent planes and the other for six lines on four planes. By using the derived invariants, a novel 3D object recognition algorithm is developed, in which a hashing technique with thresholds and multiple invariants for a model are employed to overcome the over-invariant and false alarm problems. Simulation results on real images show that the derived invariants remain stable even in a noisy environment, and the proposed 3D object recognition algorithm is quite robust and accurate. c © 2001 Elsevier Science (USA)
منابع مشابه
A novel Local feature descriptor using the Mercator projection for 3D object recognition
Point cloud processing is a rapidly growing research area of computer vision. Introducing of cheap range sensors has made a great interest in the point cloud processing and 3D object recognition. 3D object recognition methods can be divided into two categories: global and local feature-based methods. Global features describe the entire model shape whereas local features encode the neighborhood ...
متن کاملObjects Recognition by Means of Projective Invariants Considering Corner-points
This paper presents an object recognition technique based on projective geometry for industrial pieces that satisfy geometric properties. First at all, we consider some methods of corner detection which are useful for the extraction of interest points in digital images. For object recognition by means of projective invariants, an excessive number of points to be processed supposes a greater com...
متن کاملرفع اعوجاج هندسی متون بهکمک اطلاعات هندسی خطوط متن
Document images produced by scanners or digital cameras usually have photometric and geometric distortions. If either of these effects distorts document, recognition of words from such a document image using OCR is subject to errors. In this paper we propose a novel approach to significantly remove geometric distortion from document images. In this method first we extract document lines from do...
متن کاملObject Recognition based on Local Steering Kernel and SVM
The proposed method is to recognize objects based on application of Local Steering Kernels (LSK) as Descriptors to the image patches. In order to represent the local properties of the images, patch is to be extracted where the variations occur in an image. To find the interest point, Wavelet based Salient Point detector is used. Local Steering Kernel is then applied to the resultant pixels, in ...
متن کاملA Probabilistic Approach to Geometric Hashing Using Line Features
One of the most important goals of computer vision research is object recognition. Most current object recognition algorithms assume reliable image segmentation, which in practice is often not available. This research exploits the combination of the Hough method with the geometric hashing technique for model-based object recognition in seriously degraded intensity images. We describe the analys...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computer Vision and Image Understanding
دوره 84 شماره
صفحات -
تاریخ انتشار 2001